Quantization of polysymplectic manifolds

Casey Blacker

Euler International Mathematical Institute, and Saint Petersburg State University

Young Researchers' Virtual Multisymplectic Geometry Conference 13 July 2021

- Geometric prequantization
- Polysymplectic manifolds
- Olysymplectic prequantization

Based on:

B., Quantization of polysymplectic manifolds, *J. Geom. Phys.*, 2019

In this brief presentation, my aim is to motivate the following construction.

Definition (prequantum vector bundle)

A prequantum vector bundle (E, ∇, A) on a V-symplectic manifold (M, ω) consists of a

- Hermitian vector bundle $E \rightarrow M$,
- **2** fiberwise *V*-module structure $A: V \to \operatorname{End} E$,
- **③** unitary connection ∇ on E with $\nabla A = 0$,

such that the curvature $F^{
abla} \in \Omega^2(M, \operatorname{End} E)$ satisfies

$$F^{\nabla} = -A_{\omega}.$$

1. Geometric prequantization

Hamiltonian symmetries

 $\begin{array}{lll} \text{functions} & \longrightarrow & \text{symmetries} \\ \mathcal{C}^{\infty}(\mathcal{M}) \ni \boldsymbol{f} & & \boldsymbol{X} \in \mathfrak{X}(\mathcal{M}) \text{ , } \quad \mathcal{L}_{\boldsymbol{X}} \omega = 0 \end{array}$

Definition

The Hamiltonian vector field $X \in \mathfrak{X}(M)$ associated to a function $f \in C^{\infty}(M)$ is defined by

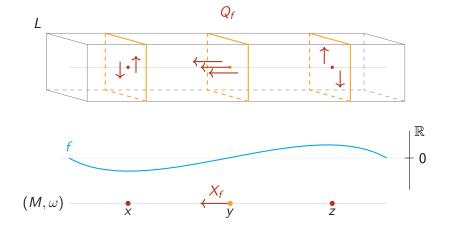
 $\mathrm{d}f = -\iota_X \omega.$

Conversely, f is called a *Hamiltonian function* of X.

The *Poisson bracket* on $C^{\infty}(M)$ is given by

$$\{f,h\}=X_fh$$

Extend the symmetries of (M, ω) to the space of sections of a Hermitian line bundle $L \rightarrow M$.



Definition

A prequantization of a symplectic manifold (M, ω) consists of

- a Hermitian line bundle $L \rightarrow M$,
- a unitary connection ∇ on L with curvature $F_{\nabla} = i c \omega$, for some nonzero constant $c \in \mathbb{R}$.
- the assignment

$$egin{aligned} Q: \ \mathcal{C}^\infty(\mathcal{M}) &\longrightarrow \operatorname{End} \mathsf{F}(\mathcal{L}) \ f &\longmapsto \mathcal{Q}_f, \end{aligned}$$

where

$$Q_f = \nabla_{X_f} + \mathrm{i} c f.$$

The pair (L, ∇) called a prequantum line bundle on (M, ω) , and the operator

$$Q_f = \nabla_{X_f} + \mathrm{i} c f$$

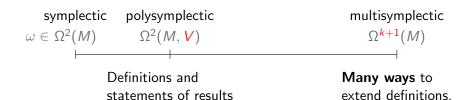
is said to be the quantum operator associated to $f \in C^{\infty}(M)$.

2. Polysymplectic manifolds

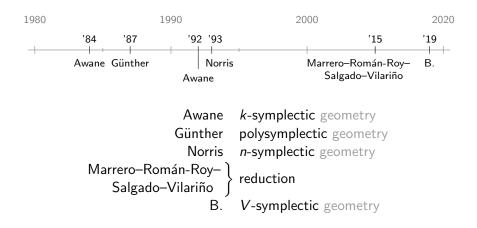
Fix a vector space V.

Definition

A *V*-symplectic structure on *M* is a closed, nondegenerate 2-form $\omega \in \Omega^2(M, V)$.



extend naturally.



Examples i

Example (Symplectic sums)

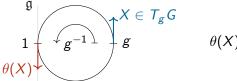
Suppose ω_1,ω_2 are symplectic forms on M and define $\omega=\omega_1\oplus\omega_2$ by

$$\omega(X,Y) = (\omega_1(X,Y),\omega_2(X,Y))$$

Then ω is an \mathbb{R}^2 -symplectic form on M.

Example (Discrete-center Lie groups)

Fix a Lie group G with discrete center and let $\theta \in \Omega^1(G, \mathfrak{g})$ be the Maurer-Cartan form on G. Then $\omega = -d\theta \in \Omega^2(G, \mathfrak{g})$ is a g-symplectic form on G.



$$\theta(X) = (\lambda_{g^{-1}})_* X$$

Examples ii

Example (Polyphase space)

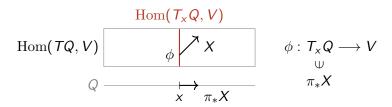
Let Q be a smooth manifold and consider the bundle

```
\pi: \operatorname{Hom}(TQ, V) \to Q
```

The canonical 1-form is

 $heta_{\phi}(X) = \phi(\pi_*X), \qquad X \in T_{\phi}\mathrm{Hom}(TQ, V)$

and the canonical V-symplectic structure is $\omega = -d\theta$.



Definition

The Hamiltonian vector field $X \in \mathfrak{X}(M)$ associated to a function $h \in C^{\infty}(M, V)$ is defined by

 $\mathrm{d}h = -\iota_X \omega$

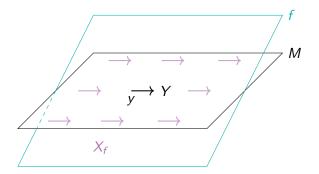
Conversely, h is called a *Hamiltonian function* for X.

 Unlike the symplectic case, not every function is Hamiltonian.

2 $C^{\infty}_{H}(M, V)$ is a Lie algebra with *bracket* given by

$$\{f,h\}=X_fh$$

 $\forall Y \in TM : \exists f \in C^{\infty}_{H}(M, V) : Y = X_{f}(y)$



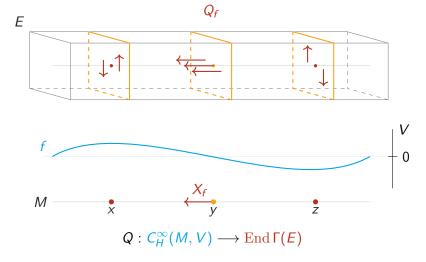
Definition

We say that (M, ω) is *transitive* if every tangent vector $Y \in TM$ extends to a Hamiltonian vector field $X_f \in \mathfrak{X}(M)$.

3. Polysymplectic prequantization

Prequantization – idea

Lift the Hamiltonian symmetries of (M, ω) to the space of sections of a Hermitian vector bundle $E \to M$.



Prequantization – preliminary definition

Preliminary Definition

A prequantization of (M, ω) consists of a Hermitian vector bundle $E \rightarrow M$ and a faithful first-order^{*} Lie algebra representation

$$Q: C^{\infty}_{H}(M, V) \to \operatorname{End} \Gamma(E)$$
 Lie alg. hom. property

preserving the inner product on the subspace of smooth L^2 sections of $E \rightarrow M$, such that

 $Q_f(s\psi) = (X_f s)\psi + sQ_f\psi$ Hamiltonian lifting property

for $f \in C^{\infty}_{H}(M, V)$, $s \in C^{\infty}(M)$, $\psi \in \Gamma(E)$.

Problem: What does it mean to be L^2 ? In the symplectic setting, there is a measure, ω^n , on (M^{2n}, ω) , unique up to rescaling, that is preserved by the Hamiltonian dynamics.

* $(Q_f \psi)_x = 0$ whenever f vanishes to first order at x

Definition

An *invariant measure* on (M^n, ω) is a volume form $\eta \in \Omega^n(M)$ that is preserved by every Hamiltonian vector field on M.

- Existence of a nonzero η is not guaranteed
- Existence of $\eta \neq 0$ transitivity of (M, ω) \implies uniqueness of η up to rescaling

Definition

An algebra of (classical) observables \mathcal{O} is any Lie subalgebra of $C^{\infty}_{H}(M, V)$.

We define invariant measures with respect to an algebra of classical observables in the natural way.

 $^{\ast}\mbox{We}$ will assume that ${\cal O}$ contains the constant functions.

Prequantization – motivating definition

Fix a V-symplectic manifold (M, ω) , an algebra of classical observables $\mathcal{O} \subseteq C^{\infty}_{H}(M, V)$, and a nonzero \mathcal{O} -invariant measure η on M.

Definition

A prequantization of $(M, \omega, \mathcal{O}, \eta)$ consists of a Hermitian vector bundle $E \to M$ and a faithful first-order Lie algebra representation

 $Q: \mathcal{O} \to \operatorname{End} \Gamma(E)$ Lie alg. hom. property

preserving the inner product on the subspace of smooth L^2 sections of $E \rightarrow M$, such that

 $Q_f(s\psi) = (X_f s)\psi + sQ_f\psi$ Hamiltonian lifting property

for $f \in \mathcal{O}$, $s \in C^{\infty}(M)$, $\psi \in \Gamma(E)$.

For simplicity, we will assume $\mathcal{O} = C^{\infty}_{H}(M, V)$ and $\eta \neq 0$ exists.

The induced V-linear connection on $E \rightarrow M$

Consider the Lie subalgebra $V \subseteq \mathcal{O}$.

For all $v \in V$, the equality

$$Q_{\nu}(s\psi) = \underbrace{(X_{\nu}s)}_{0}\psi + sQ_{\nu}\psi = sQ_{\nu}\psi, \quad \forall s \in C^{\infty}(M), \ \psi \in \Gamma(E),$$

implies that $Q_{\nu} \in \operatorname{End} \Gamma(E)$ is tensorial.

We obtain an induced Lie algebra representation of ${\cal V}$ on the fibers of ${\cal E},$

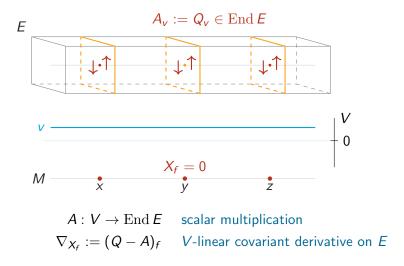
 $v \mapsto A_v \in \operatorname{End} E$,

and $E \rightarrow M$ inherits the structure of a bundle of V-representations.

Proposition

If (M, ω) is transitive, then $\nabla_X \psi = (Q - A)_{f_X} \psi$ defines a V-linear covariant derivative on E.

Scalar multiplication and the induced connection



Prequantum vector bundles

Definition

A prequantum vector bundle (E, ∇, A) on (M, ω) consists of a

• Hermitian vector bundle
$$E o M$$
,

- **2** fiberwise *V*-module structure $A: V \to \operatorname{End} E$,
- **③** unitary connection ∇ on E with $\nabla A = 0$,

such that $F^{\nabla} = -A_{\omega}$, i.e. $F^{\nabla}(X_f, X_h) = -A_{\omega(X_f, X_h)}$ for all f, h.

Theorem

If (M, ω) is transitive and connected, then there is a natural correspondence:

 $\{prequantizations\} \iff \{prequantum \ vector \ bundles\}$

$$Q: C^{\infty}_{H}(M, V) \longrightarrow \operatorname{End} \Gamma(M, E)$$

 $f \longmapsto \nabla_{X_f} + A_f$

- What happens when (M, ω) is *not* transitive?
- Ooes the Lie algebra homomorphism property imply the first-order condition?
- What happens when we remove the first-order condition?
- When does an invariant measure η on (M, ω) exist?
- What other "nice" properties do transitive polysymplectic manifolds exhibit?

Thank you!