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Aim

In this brief presentation, my aim is to motivate the following
construction.

Definition (prequantum vector bundle)

A prequantum vector bundle (E ,∇,A) on a V -symplectic manifold
(M, ω) consists of a

1 Hermitian vector bundle E → M,

2 fiberwise V -module structure A : V → EndE ,

3 unitary connection ∇ on E with ∇A = 0,

such that the curvature F∇ ∈ Ω2(M,EndE ) satisfies

F∇ = −Aω.
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1. Geometric prequantization
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Hamiltonian symmetries

functions −→ symmetries
C∞(M) 3 f X ∈ X(M) , LXω = 0

Definition

The Hamiltonian vector field X ∈ X(M) associated to a function
f ∈ C∞(M) is defined by

df = −ιXω.

Conversely, f is called a Hamiltonian function of X .

The Poisson bracket on C∞(M) is given by

{f , h} = Xf h
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Idea

Extend the symmetries of (M, ω) to the space of sections of a
Hermitian line bundle L→ M.

(M, ω)

L

R

0
f

Xf

x zy

Qf
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Definition

A prequantization of a symplectic manifold (M, ω) consists of

i. a Hermitian line bundle L→ M,

ii. a unitary connection ∇ on L with curvature F∇ = ic ω, for
some nonzero constant c ∈ R.

iii. the assignment

Q : C∞(M) −→ End Γ(L)

f 7−→ Qf ,

where
Qf = ∇Xf

+ ic f .

The pair (L,∇) called a prequantum line bundle on (M, ω), and
the operator

Qf = ∇Xf
+ ic f

is said to be the quantum operator associated to f ∈ C∞(M).
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2. Polysymplectic manifolds
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Definition

Fix a vector space V .

Definition

A V -symplectic structure on M is a closed, nondegenerate 2-form
ω ∈ Ω2(M,V ).

symplectic

Ω2(M)

polysymplectic

Ω2(M,V )

Definitions and
statements of results
extend naturally.

multisymplectic

Ωk+1(M)

Many ways to
extend definitions.

ω ∈
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Examples i

Example (Symplectic sums)

Suppose ω1, ω2 are symplectic forms on M and define ω = ω1 ⊕ ω2

by
ω(X ,Y ) =

(
ω1(X ,Y ), ω2(X ,Y )

)
Then ω is an R2-symplectic form on M.

Example (Discrete-center Lie groups)

Fix a Lie group G with discrete center and let θ ∈ Ω1(G , g) be the
Maurer-Cartan form on G . Then ω = −dθ ∈ Ω2(G , g) is a
g-symplectic form on G .

g

1

θ(X )

g

X ∈ TgG

g−1 θ(X ) = (λg−1)∗ X
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Examples ii

Example (Polyphase space)

Let Q be a smooth manifold and consider the bundle

π : Hom(TQ,V )→ Q

The canonical 1-form is

θφ(X ) = φ(π∗X ), X ∈ TφHom(TQ,V )

and the canonical V -symplectic structure is ω = −dθ.

Hom(TxQ,V )

φ X

Q

Hom(TQ,V )

x π∗X

φ : TxQ −→ V
∈

π∗X
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Polysymplectic Hamiltonian symmetries

Definition

The Hamiltonian vector field X ∈ X(M) associated to a function
h ∈ C∞(M,V ) is defined by

dh = −ιXω

Conversely, h is called a Hamiltonian function for X .

1 Unlike the symplectic case, not every function is
Hamiltonian.

2 C∞H (M,V ) is a Lie algebra with bracket given by

{f , h} = Xf h
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Transitivity

∀Y ∈ TM : ∃ f ∈ C∞H (M,V ) : Y = Xf (y)

M

y Y

Xf

f

Definition

We say that (M, ω) is transitive if every tangent vector Y ∈ TM
extends to a Hamiltonian vector field Xf ∈ X(M).
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3. Polysymplectic prequantization
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Prequantization – idea

Lift the Hamiltonian symmetries of (M, ω) to the space of sections
of a Hermitian vector bundle E → M.

M

E

V

0
f

Xf

x zy

Qf

Q : C∞H (M,V ) −→ End Γ(E )
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Prequantization – preliminary definition

Preliminary Definition

A prequantization of (M, ω) consists of a Hermitian vector bundle
E → M and a faithful first-order∗ Lie algebra representation

Q : C∞H (M,V )→ End Γ(E ) Lie alg. hom. property

preserving the inner product on the subspace of smooth L2 sections
of E → M, such that

Qf (sψ) = (Xf s)ψ + sQf ψ Hamiltonian lifting property

for f ∈ C∞H (M,V ), s ∈ C∞(M), ψ ∈ Γ(E ).

Problem: What does it mean to be L2? In the symplectic setting,
there is a measure, ωn, on (M2n, ω), unique up to rescaling, that is
preserved by the Hamiltonian dynamics.
∗ (Qf ψ)x = 0 whenever f vanishes to first order at x
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Invariant measures

Definition

An invariant measure on (Mn, ω) is a volume form η ∈ Ωn(M) that
is preserved by every Hamiltonian vector field on M.

Existence of a nonzero η is not guaranteed

Existence of η 6= 0

transitivity of (M, ω)

}
=⇒ uniqueness of η up to rescaling

Definition

An algebra of (classical) observables O is any Lie subalgebra of
C∞H (M,V ).

We define invariant measures with respect to an algebra of
classical observables in the natural way.
∗We will assume that O contains the constant functions.
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Prequantization – motivating definition

Fix a V -symplectic manifold (M, ω), an algebra of classical
observables O ⊆ C∞H (M,V ), and a nonzero O-invariant measure η
on M.

Definition

A prequantization of (M, ω,O, η) consists of a Hermitian vector
bundle E → M and a faithful first-order Lie algebra representation

Q : O → End Γ(E ) Lie alg. hom. property

preserving the inner product on the subspace of smooth L2 sections
of E → M, such that

Qf (sψ) = (Xf s)ψ + sQf ψ Hamiltonian lifting property

for f ∈ O, s ∈ C∞(M), ψ ∈ Γ(E ).

For simplicity, we will assume O = C∞H (M,V ) and η 6= 0 exists.
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The induced V -linear connection on E → M

Consider the Lie subalgebra V ⊆ O.

For all v ∈ V , the equality

Qv (sψ) = (Xv s)︸ ︷︷ ︸
0

ψ + sQvψ = sQvψ, ∀s ∈ C∞(M), ψ ∈ Γ(E ),

implies that Qv ∈ End Γ(E ) is tensorial.

We obtain an induced Lie algebra representation of V on the fibers
of E ,

v 7→ Av ∈ EndE ,

and E → M inherits the structure of a bundle of V -representations.

Proposition

If (M, ω) is transitive, then ∇Xψ = (Q − A)fXψ defines a V -linear
covariant derivative on E .
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Scalar multiplication and the induced connection

M

E

V

0
v

x zy

Xf = 0

Av := Qv ∈ EndE

A : V → EndE scalar multiplication

∇Xf
:= (Q − A)f V -linear covariant derivative on E
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Prequantum vector bundles

Definition

A prequantum vector bundle (E ,∇,A) on (M, ω) consists of a

1 Hermitian vector bundle E → M,

2 fiberwise V -module structure A : V → EndE ,

3 unitary connection ∇ on E with ∇A = 0,

such that F∇ = −Aω, i.e. F∇(Xf ,Xh) = −Aω(Xf ,Xh) for all f , h.

Theorem

If (M, ω) is transitive and connected, then there is a natural
correspondence:

{prequantizations} ←→ {prequantum vector bundles}

Q : C∞H (M,V ) −→ End Γ(M,E )

f 7−→ ∇Xf
+ Af
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Some questions

1 What happens when (M, ω) is not transitive?

2 Does the Lie algebra homomorphism property imply the
first-order condition?

3 What happens when we remove the first-order condition?

4 When does an invariant measure η on (M, ω) exist?

5 What other “nice” properties do transitive polysymplectic
manifolds exhibit?
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Thank you!
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